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Limitations of Previous Visual Hand Dynamic Analysis

Focus Mostly on Static Estimations

Position: x(𝑡) (1)

Overlooked Dynamic Information

Velocity: ̇x(𝑡), Acceleration: ̈x(𝑡) (2)
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Limitations of Previous Visual Hand Dynamic Analysis

Mistakenly Treat Human Hand asMulti-Body Systems

Figure: The illustrations showcase two hand configurations: Left. Fingers bent only at the tip joints.
Right. Fingers bent at both tip and base joints. These poses are achievable for robots, but not human
hands due to joint limitations.
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Musculoskeletal Model
• Explicitly emulates the dynamics of muscles & tendons to drive the skeleton
• Impose physiologically realistic constraints on the resulting torque trajectories

Excitation

Figure: The excitation signal originating from the brain triggers the contraction or relaxation of
muscles. The triggered muscle segments are illustrated in green, while the relaxed ones are in brown.
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Our Contributions
To address the limitations of previous visual hand
dynamic analysis methods, we

• IntroduceMS-MANO, a musculoskeletal
extension of the MANO hand model, with
learning support and shape adaptability.

• Demonstrate MS-MANO’s effectiveness in
hand pose tracking using the BioPR
framework, benchmarking on DexYCB and
OakInk datasets.

Figure: MS-MANO model.
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MusculoSkeletal-MANO
MS-MANO integrates hill-type-based musculoskeletal dynamics with MANO,
mapping OpenSim’s bone-centric muscles into a joint-centric representation.

(a) (b) (c)

Figure: Joint-centric muscle adaptation. (a) A set of smaller bones is mapped into a single joint. (b)
Bone-centric muscle segments can adapt to different shapes. (c) (Left) Raw skeleton after automatic
mapping results intersection. (Right) Revised skeleton can perfectly fit with MANO model.
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Biomechanical Pose Refiner
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Figure: BioPR’s simulation-in-the-loop pipeline. It interpolates and differentiates poses, infers muscle
excitation signals using IDNet, and generates the next reference pose via forward dynamics. The
Refine Net performs final refinement based on initial pose, velocity, and reference pose.
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Results

Methods MPJPE↓ AUC↑ AE↓

VIBE 16.95 67.5 36.4
TCMR 16.03 70.1 34.3

MeshGraphormer 16.21 69.1 35.9

gSDF 14.4 89.1 30.3
gSDF + BioPR 12.81 89.7 29.9

Deformer 13.64 89.6 31.7
Deformer + BioPR 12.92 90.4 30.7

Table: Quantitative results.

Input gSDF Ours Input gSDF Ours Input gSDF Ours

Figure: Qualitative results.
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Conclusion
• We proposeMS-MANO, a musculoskeletal extension of the MANO hand model,
to enable hand pose tracking with biomechanical constraints.

• We introduce BioPR, a simulation-in-the-loop framework, to refine hand pose
estimates by incorporating muscle dynamics.

• We demonstrate the effectiveness of MS-MANO and BioPR on the DexYCB and
OakInk datasets.
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