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Introduction

MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints =%

Human hand motion relies on the musculoskeletal system, where brain
signals to muscles generate torque for joint movement. Most visual hand
dynamics frameworks overlook this, modeling hand dynamics as multi-
ody systems, which can result in unnatural, robot-like movements.
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Figure 1. The physiological mechanism of hand dynamics. (a) The excitation signal
originating from the brain triggers the contraction or relaxation of muscles. The
triggered muscle segments are illustrated in green, while the relaxed ones are Iin
brown. (b) The muscle contraction triggered by excitation manifests as the movement
of the hand in appearance.

To address this, we

* Introduce MS-MANO, a musculoskeletal extension of the MANO hand
model, with learning support and shape adaptability.

= Demonstrate MS-MANQOQ's effectiveness in hand pose tracking using
the BioPR framework, benchmarking on DexYCB and Oaklnk datasets.
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Figure 2. The hill-type muscle. (a) Each muscle segment is composed of the
contractile element CE, the parallel elastic element PEE, and the serial elastic element
SEE. (b) Each muscle segment originates from a certain point nqigin and ends at
Ninsertion- A Joint j connects two bones. Once triggered, the muscle segment can apply
torque 7 on the joint.

https://ms-mano.robotflow.ai
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Biom Pose Refiner Results
BioPR refines hand pose estimates by incorporating muscle dynamics using IDNet (Inverse Dynam- Input gSDF Ours Input gSDF Ours Input gSDF Ours

ics) and a simulation-in-the-loop framework. Initial poses are corrected via a reference pose p"f
generated by forward kinematics with muscle excitation signals a from IDNet. A refinement network

then produces a refined pose prefined — Aq(pPTs pref).
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Figure 3. The simulation-in-the-loop pipeline of BioPR. Given a sequence of RGB images and the corresponding
predictions of an existing hand pose estimator, BioPR first interpolates and differentiates the poses to get the joint
velocities. Then, the IDNet is used to infer the muscle excitation signals. The joint poses, velocities, excitation signals,
and the poses of the previous frame (denoted by dotted lines) are sent into the simulator, which will generate the next
reference pose by forward kinematics. The Refine Net will do the final refinement based on the pose, velocity, and
reference pose. On the next frame, the refined pose can be fed back to the simulator.

Input gSDF Ours

MusculoSkeletal-MANO

MS-MANO integrates hill-type-based (fig. 2) musculoskeletal dynamics with MANO, mapping Open-
Sim’s bone-centric muscles into a joint-centric representation.
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Figure 4. Joint-centric muscle adaptation. (a) A set of smaller bones in the MyoHand model is mapped into a single
joint in the MANO model. (b) The bone-centric muscle segments can adapt to different shapes. (c) (Left) The raw
skeleton after the automatic mapping will result in issues like intersection. (Right) The manually revised skeleton can
perfectly fit with the MANO model.
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